Diversity in the organisation and lignification of tension wood fibre walls – A review
نویسندگان
چکیده
Tension wood, a tissue developed by angiosperm trees to actively recover their verticality, has long been defined by the presence of an unlignified cellulosic inner layer in the cell wall of fibres, called the G-layer. Although it was known that some species have no G-layer, the definition was appropriate since it enabled easy detection of tension wood zones using various staining techniques for either cellulose or lignin. For several years now, irrespective of its anatomical structure, tension wood has been defined by its high mechanical internal tensile stress. This definition enables screening of the diversity of cell walls in tension wood fibres. Recent results obtained in tropical species with tension wood with a delay in the lignification of the G-layer opened our eyes to the effective presence of large amounts of lignin in the G-layer of some species. This led us to review older literature mentioning the presence of lignin deposits in the G-layer and give them credit. Advances in the knowledge of tension wood fibres allow us to reconsider some previous classifications of the diversity in the organisation of the fibre walls of the tension wood.
منابع مشابه
Integrated -Omics: A Powerful Approach to Understanding the Heterogeneous Lignification of Fibre Crops
Lignin and cellulose represent the two main components of plant secondary walls and the most abundant polymers on Earth. Quantitatively one of the principal products of the phenylpropanoid pathway, lignin confers high mechanical strength and hydrophobicity to plant walls, thus enabling erect growth and high-pressure water transport in the vessels. Lignin is characterized by a high natural heter...
متن کاملPlant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite
Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, ...
متن کاملLocalization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation.
The distribution of noncellulosic polysaccharides in cell walls of tracheids and xylem parenchyma cells in normal and compression wood of Pinus radiata, was examined to determine the relationships with lignification and cellulose microfibril orientation. Using fluorescence microscopy combined with immunocytochemistry, monoclonal antibodies were used to detect xyloglucan (LM15), β(1,4)-galactan ...
متن کاملLignification in poplar tension wood lignified cell wall layers.
The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignificatio...
متن کاملEvidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress.
To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees re...
متن کامل